
Programming Models:

Petascale and Beyond

Kathy Yelick

U.C. Berkeley and

Lawrence Berkeley National Laboratory

Software Issues at Scale

• DARPA Study on Exascale
– Power discussion dominates all others; concurrency is the

only significant approach:

• lower clock, increases parallelism

– Power density and system power (20-155MW)

• Summary Issues for Software
– Exascale will require billion-way concurrency with 1K

cores per chip

– Departmental scale (1 PF) systems will require millions of
threads

– The memory/core ratio will drop by at least an order of
magnitude across machine size

• Note: Weak Scaling at Risk!

– A new model for fault tolerant software is needed;
checkpoints to disk will be impractical

• These issues will creep into Petascale

Need a Fundamentally New Approach

• Rethink hardware

– What limits performance

– How to build efficient hardware

• Rethink software

– Massive parallelism

– Eliminate scaling bottlenecks replication,

synchronization

• Rethink algorithms

– Massive parallelism and locality

– Counting Flops is the wrong measure

Rethinking Programming

Models

Two Parallel Language Questions

• What is the parallel control model?

• What is the model for sharing/communication?

 implied synchronization for message passing, not shared memory

data parallel

(singe thread of control)
dynamic

threads

single program

multiple data (SPMD)

shared memory

load

store

send

receive

message passing

A Brief History of Languages

• When vector machines were king
– Parallel “languages” were loop annotations (IVDEP)

– Performance was fragile, but there was good user support

• When SIMD machines were king
– Data parallel languages popular and successful (CMF, *Lisp, C*, …)

– Quite powerful: can handle irregular data (sparse mat-vec multiply)

– Irregular computation is less clear (multi-physics, adaptive meshes,

backtracking search, sparse matrix factorization)

• When shared memory machines (SMPs) were king
– Shared memory models, e.g., OpenMP, Posix Threads, are popular

• When clusters took over
– Message Passing (MPI) became dominant

We are at the mercy of HW, but SW takes the blame.

To Virtualize or Not

• The fundamental question facing in parallel
programming models is:

 What should be virtualized?

• Hardware has finite resources
– Processor count is finite

– Registers count is finite

– Fast local memory (cache and DRAM) size is finite

– Links in network topology are generally < n2

• Does the programming model (language+libraries)
expose this or hide it?
– E.g., one thread per core, or many?

• Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

• But one thread is better for deep memory hierarchies

• How to get the most out of your machine?

PGAS Languages

• Global address space: thread may directly read/write remote data
– “Virtualizes” or hides the distinction between shared/distributed

memory

• Partitioned: data is designated as local or global
– Does not hide this: critical for locality and scaling

G
lo

b
a
l
a
d

d
re

s
s
 s

p
a
c
e

x: 1

y:

l: l: l:

g: g: g:

x: 5

y:

x: 7

y: 0

p0 p1 pn

• UPC, CAF, Titanium: Static parallelism (1 thread per proc)
– Does not virtualize processors; main difference from HPCS

languages which have many/dynamic threads

What Makes a Language/Library PGAS?

• Support for distributed data structures

– Distributed arrays; local and global pointers/references

• One-sided shared-memory communication

– Simple assignment statements: x[i] = y[i]; or t = *p;

– Bulk operations: memory copy or array copy

– Optional: remote invocation of functions

• Control over data layout

– PGAS is not the same as (cache-coherent) “shared memory”

– Remote data stays remote in the performance model

• Synchronization

– Global barriers, locks, memory fences

• Collective Communication, IO libraries, etc.

What Make Communication One-Sided?

• A one-sided put/get message can be handled directly by a
network interface with RDMA support
– Avoid interrupting the CPU or storing data from CPU

(preposts)

• A two-sided messages needs to be matched with a receive
to identify memory address to put data
– Offloaded to Network Interface in networks like Quadrics

– Need to download match tables to interface (from host)

address

message id

data payload

data payload

one-sided put message

two-sided message

network

 interface

memory

host

CPU

Joint work with Dan Bonachea

Performance Advantage of

One-Sided Communication

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
o

u
n

d
t
r
ip

 L
a
t
e
n

c
y
 (

u
s
e
c
)

MPI ping-pong

GASNet put+sync

• The put/get operations in PGAS languages (remote read/write)
are one-sided (no required interaction from remote proc)

• This is faster for pure data transfers than two-sided send/receive

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714
231

763

223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

P
e

r
c

e
n

t
H

W
 p

e
a

k

MPI

GASNet

Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:

–Chunk:

• Wait for 2nd dim FFTs to finish

• Minimize # messages

–Slab:

• Wait for chunk of rows destined

for 1 proc to finish

• Overlap with computation

–Pencil:

• Send each row as it completes

• Maximize overlap and

• Match natural layout
slab = all rows in a single plane with

same destination

NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high

• Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
F
l
o
p
s

p
e
r

T
h
r
e
a
d Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI

Best MPI

Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best NAS Fortran/MPI
Best MPI (always Slabs)
Best UPC (always Pencils)

.5 Tflops

 Myrinet Infiniband Elan3 Elan3 Elan4 Elan4

#procs 64 256 256 512 256 512

M
F

lo
p

s
 p

e
r

T
h

re
a

d

Chunk (NAS FT with FFTW)
Best MPI (always slabs)
Best UPC (always pencils)

Arrays in a Global Address Space

• Key features of Titanium arrays

– Generality: indices may start/end and any point

– Domain calculus allow for slicing, subarray, transpose and other

operations without data copies

• Use domain calculus to identify ghosts and iterate:
 foreach (p in gridA.shrink(1).domain()) ...

• Array copies automatically work on intersection
 gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-ghost)
cells

ghost cells

intersection (copied area)

Joint work with Titanium group

Useful in grid

computations

including AMR

Languages Support Helps

Productivity
C++/Fortran/MPI AMR

• Chombo package from LBNL

• Bulk-synchronous comm:
– Pack boundary data between procs

– All optimizations done by programmer

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

– No explicit pack/unpack code
– Automated in runtime system

• General approach
– Language allow programmer optimizations
– Compiler/runtime does some automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su

0

5000

10000

15000

20000

25000

30000

Titanium C++/F/MPI

(Chombo)

L
in

e
s

 o
f

C
o

d
e

AMRElliptic

AMRTools

Util

Grid

AMR

Array

Speedup

0

10

20

30

40

50

60

70

80

16 28 36 56 112

#procs

sp
ee

d
u

p

Ti Chombo

Particle/Mesh Method: Heart Simulation

• Elastic structures in an incompressible fluid.

– Blood flow, clotting, inner ear, embryo growth, …

• Complicated parallelization
– Particle/Mesh method, but “Particles” connected into

materials (1D or 2D structures)

– Communication patterns irregular between particles
(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines

8000

Fortran

4000

Titanium

Note: Fortran code is not parallel

Beyond the SPMD Model: Dynamic Threads

• UPC uses a static threads (SPMD) programming model

– No dynamic load balancing built-in

• Berkeley compiler has some extensions

– Allows programmers to execute active messages (AMs)

– AMs have limited functionality (no messages except acks) to
avoid deadlock in the network

• A more dynamic runtime would have many other uses

– Application load imbalance, OS noise, fault tolerance

• Two extremes are well-studied

– Dynamic parallelism without locality

– Static parallelism (with threads = processors) with locality

• What issues do we run into if we want dynamic threads
with locality?

18

LU Factorization with Partial Pivoting

• Interesting, heavily used computational kernel

– Non-trivial dependence patterns

• Available in Linpack/LAPACK/ScaLAPACK

LAPACK/ScaLAPACK are the second most popular mathematical
libraries by NERSC users

• HPL benchmark

Highly tuned parallel block LU factorization with partial pivoting

Best optimized code around, written with MPI

Rules for extreme performance

Locality and load balance (traditional blocked-cyclic layout)

Maximize cache re-use; use blocks (merge blocks when possible)

Avoid synchronization in the network: one-sided communication

Avoid waiting on algorithmic synchronization and data transfers
using multithreading

Joint work with Parry Husbands

19

LU Factorization with Partial Pivoting

for i=1:n-1

 swap rows so |a(i,i)| = max{abs(a(:,i))} // pivot

 for j=i+1:n

 l(j,i) = a(j,i)/a(i,i) // scale to get l

 for j=i:n

 u(i,j)=a(i,j) // update u

 for j=i+1:n

 for k=i+1:n // trailing matrix

 a(j,k) = a(j,k)-l(j,i)*u(i,k) // update

Code is blocked in practice, so that updates are matmuls

 Joint work with Parry Husbands

C
o

m
p

le
te

d
 p

a
rt o

f L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix

to be updated

Completed part of U

Parallel Tasks in LU

• Panel Factorizations (parallel recursive
formulation used)

• Pivot application and update to U

• Trailing matrix updates

some edges omitted

LU in UPC + Multi-threading
• UPC uses a static threads (SPMD) programming model

• Co-operative multi-threading used to mask latency and
to mask dependence delays (home-grown package)
– Thread volunteers to give up processor; never pre-empted

• Important for deep memory hierarchies

– Non-blocking (get) transfers to mask communication latency

– Remote enqueue used to spawn remote threads.

– Matrix blocks distributed in 2-d block-cyclic manner (fixed layout)
and tuned for block size.

• Three levels of threads in LU code:
– UPC threads (data layout, each runs an event scheduling loop)

– Multithreaded BLAS (boost efficiency)

– User level (non-preemptive) threads with explicit yield

• Operations “fire” when dependencies are satisfied.
– Carefully tuned application-specific scheduler use to prioritize

critical path and avoid memory allocator deadlock

UPC HP Linpack Performance

•Faster than ScaLAPACK (less synchronization), comparable to MPI/HPL

•Large scaling of UPC code on Itanium/Quadrics (Thunder)

•2.2 TFlops on 512p and 4.4 TFlops on 1024p

91.8% of peak on 1p Itanium 2 1.5GHz, 81.9% on 1p Opteron 2.2GHz

X1 UPC vs. MPI/HPL

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
F

lo
p

/s

MPI/HPL

UPC

Opteron

cluster

UPC vs.

MPI/HPL

0

50

100

150

200

Opt/64

G
F

lo
p

/s

MPI/HPL

UPC

Altix UPC.

Vs.

MPI/HPL

0

20

40

60

80

100

120

140

160

Alt/32

G
F

lo
p

/s

MPI/HPL

UPC

UPC vs.

ScaLAPACK

0

20

40

60

80

2x4 proc grid 4x4 proc grid

G
F
lo

p
s

ScaLAPACK

UPC

Lessons Learned

• One-sided communication is faster than 2-sided
– FFT example shown previous

• Global address space can ease programming
– Dynamic scheduling can tolerate latencies

– More adaptive and easier to use (fewer knobs)

• Principled scheduling that takes into account
– Critical Path, Memory use, Cache, etc.

• Combination of dynamic loc balancing with
locality control has new challenges
– Previous work solve load balancing (Cilk) or locality

(MPI) but not both together

• Current PGAS languages are not the final answer

Rethinking Software

Performance from Multicore:
How hard can it be?

Autotuning: Extreme Performance

Programming

• Automatic performance tuning
– Use machine time in place of human time for tuning
– Search over possible implementations
– Use performance models to restrict search space

• Programmers should write programs to generate
code, not the code itself

• Autotuning finds a good performance solution be
heuristics or exhaustive search
– Perl script generates many versions

– Generate SIMD-optimized kernels

– Autotuner anlyzes/runs kernels

– Uses search and heuristics

• PERI SciDAC is including some of these ideas into
compilers and domain-specific code generators
libraries, e.g., OSKI for sparse matrices

Block size (n0 x

m0) for dense

matrix-matrix

multiply

Sparse Matrix

Vector Multiplication

• Sparse matrix-vector multiply

– Important to applications

• Challenges

– Very low computational intensity (often >6 bytes/flop)

= likely memory bound

– Difficult to exploit Superscalar

– Difficult to exploit SIMD

– Irregular memory access

– Difficult to load balance

• Optimizations depend on matrix

A x y

Optimization:

1.5x more entries (zeros)

 1.5x speedup

Compilers won’t do this!

Naïve Serial Implementation

• Vanilla C

implementation

• Matrix stored in CSR

(compressed sparse

row)

• Explored compiler

options, but only the

best is presented here

• x86 core delivers > 10x

the performance of a

Niagara2 thread

• Work by Sam Williams

with Vuduc, Oliker,

Shalf, Demmel, Yelick

IBM Cell Blade (PPE)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

Autotuned Performance

IBM Cell Blade (PPEs)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

+More DIMMs(opteron),

+FW fix, array padding(N2), etc…

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

• Threads alone doesn’t

show much benefit on

AMD; need to control

memory layout

Autotuned Performance
(+Cell/SPE version)

• Wrote a double precision
Cell/SPE version

• DMA, local store
blocked, NUMA aware,
etc…

• Only 2x1 and larger
BCOO

• Only the SpMV-proper
routine changed

• About 12x faster
(median) than using the
PPEs alone.

IBM Cell Blade (SPEs)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

+More DIMMs(opteron),

+FW fix, array padding(N2), etc…

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

• Wrote a double precision
Cell/SPE version

• DMA, local store
blocked, NUMA aware,
etc…

• Only 2x1 and larger
BCOO

• Only the SpMV-proper
routine changed

• About 12x faster than
using the PPEs alone.

Autotuned Performance
(+Cell/SPE version)

IBM Cell Blade (SPEs)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

+More DIMMs(opteron),

+FW fix, array padding(N2), etc…

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

4% of peak flops

52% of bandwidth
20% of peak flops

65% of bandwidth

54% of peak flops

57% of bandwidth 40% of peak flops

92% of bandwidth

MPI vs. Threads

• On x86 machines,
autotuned shared
memory MPICH
implementation
rarely scales
beyond 2 threads

• Still debugging MPI
issues on Niagara2,
but so far, it rarely
scales beyond 8
threads.

Autotuned pthreads

Autotuned MPI

Naïve Serial

Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

LBMHD: Structure Grid Application

• Plasma turbulence simulation

• Two distributions:

– momentum distribution (27 components)

– magnetic distribution (15 vector components)

• Three macroscopic quantities:

– Density

– Momentum (vector)

– Magnetic Field (vector)

• Must read 73 doubles, and update(write) 79 doubles per point in
space

• Requires about 1300 floating point operations per point in space

• Just over 1.0 flops/byte (ideal)

• No temporal locality between points in space within one time step

• Work by Sam Williams with Jonathan Carter, Lenny Oliker, John
Shalf, and Kathy Yelick

Autotuned Performance
(Cell/SPE version)

• First attempt at cell
implementation.

• VL, unrolling, reordering
fixed

• Exploits DMA and double
buffering to load vectors

• Straight to SIMD intrinsics.

• Despite the relative
performance, Cell’s DP
implementation severely
impairs performance

Intel Clovertown AMD Opteron

Sun Niagara2 (Huron) IBM Cell Blade*

*collision() only

+SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

Autotuned Performance
(Cell/SPE version)

Intel Clovertown AMD Opteron

Sun Niagara2 (Huron) IBM Cell Blade*

*collision() only

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

59% of peak flops

15% of bandwidth

57% of peak flops

33% of bandwidth

7.5% of peak flops

17% of bandwidth

42% of peak flops

35% of bandwidth

Lessons Learned

• Number of cores/chip will grow with Moore’s Law

• Experience on multicore today is limited
– Current multicore (AMD and Intel) look like SMPs, but

GPUs, games, and others will influence them

• Explicitly manage memory is easier to tune for
– Put/Get (DMA) operations are a good fit (PGAS?)

• MPI is not a viable model for Exascale
– Does not get best performance

– Does not permit sharing, which will be critical

• Sharing data will be critical as cores count grows

• A 10x10x10 grid subdomain has >50% surface area; we can’t
afford “ghost” regions at this scale or below

– Even threads may be too heavy-weight for 1K cores

• Need a new dynamic model for software
– Write programs to write applications and libraries

Rethinking Algorithms

Count memory, not Flops

Latency and Bandwidth-Avoiding

• Many iterative algorithms are limited by

– Communication latency (frequent messages)

– Memory bandwidth

• New optimal ways to implement Krylov subspace methods on
parallel and sequential computers

– Replace x Ax by x [Ax,A2x,…Akx]

– Change GMRES, CG, Lanczos, … accordingly

• Theory

– Minimizes network latency costs on parallel machine

– Minimizes memory bandwidth and latency costs on sequential
machine

• Performance models for 2D problem

– Up to 7x (overlap) or 15x (no overlap) speedups on BG/P

• Measure speedup: 3.2x for out-of-core

Latency Avoiding Parallel Kernel for

[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by neighbors

• Send data to neighbors, receive from
neighbors

• Compute remaining locally
dependent entries

• Wait for receive

• Compute remotely dependent entries

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Local Dependencies for k=8

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,…,A8x], A tridiagonal

Can be computed without communication

k=8 fold reuse of A

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (1) Remote Dependencies for k=8

Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

One message to get data needed to compute remotely dependent entries, not k=8

Price: redundant work

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (2) Remote Dependencies for k=8

Fewer Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Reduce redundant work by half

Work by Demmel and Hoemmen

Can use Matrix Power Kernel, but change Algorithms

Conclusions

• Re-think Programming Models

– Software to make the most of hardware

• One-sided communication to avoid synchronization

• Global address space to increase sharing (re-use)

and for productivity

• Re-think software for libraries/applications

– Write self-tuning applications

• Re-think Algorithms

– Design for bottlenecks: latency and bandwidth

